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Abstract

‘‘It takes a village to finish (marine) science these days’’ Paraphrased from Curtis Huttenhower (the Human Microbiome
project) The rapidity and complexity of climate change and its potential effects on ocean biota are challenging how ocean
scientists conduct research. One way in which we can begin to better tackle these challenges is to conduct community-wide
scientific studies. This study provides physiological datasets fundamental to understanding functional responses of
phytoplankton growth rates to temperature. While physiological experiments are not new, our experiments were
conducted in many laboratories using agreed upon protocols and 25 strains of eukaryotic and prokaryotic phytoplankton
isolated across a wide range of marine environments from polar to tropical, and from nearshore waters to the open ocean.
This community-wide approach provides both comprehensive and internally consistent datasets produced over
considerably shorter time scales than conventional individual and often uncoordinated lab efforts. Such datasets can be
used to parameterise global ocean model projections of environmental change and to provide initial insights into the
magnitude of regional biogeographic change in ocean biota in the coming decades. Here, we compare our datasets with a
compilation of literature data on phytoplankton growth responses to temperature. A comparison with prior published data
suggests that the optimal temperatures of individual species and, to a lesser degree, thermal niches were similar across
studies. However, a comparison of the maximum growth rate across studies revealed significant departures between this
and previously collected datasets, which may be due to differences in the cultured isolates, temporal changes in the clonal
isolates in cultures, and/or differences in culture conditions. Such methodological differences mean that using particular
trait measurements from the prior literature might introduce unknown errors and bias into modelling projections. Using our
community-wide approach we can reduce such protocol-driven variability in culture studies, and can begin to address more
complex issues such as the effect of multiple environmental drivers on ocean biota.
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Introduction

To date, much of the progress in understanding how climate

change will manifest itself in the ocean has come from projections

obtained from global modelling experiments using general

circulation or coupled ocean atmosphere models [1,2]. These

types of models provide predictions of how bulk properties such as

phytoplankton stocks (based on the proxy chlorophyll a) or

ecosystem-level properties, such as downward export flux, will be

altered by climate in the coming decades. However, at present

many environmental projections from models – for example global

maps of altered upper ocean temperature or nutrient concentra-

tions - cannot be put into the urgently-needed wider context of the

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63091



biological or ecological implications resulting from climate change.

Such under-utilisation of model outputs is due to the current

dearth of information on the physiological performance (often

expressed as fitness versus environment, [3]) of many phytoplank-

ton groups, species or ecotypes that are key players in the

biogeochemical cycling of major (C, N, P) and minor (Fe, Zn, Co)

elements in the ocean [4]. Given that phytoplankton photosyn-

thesis and nitrogen fixation make major contributions to global C

[5,6] and N [7,8] inventories, respectively, they can potentially

drive significant feedbacks on climate change. However, the sign

and magnitude of most biologically-mediated feedbacks are not yet

known [9]. Both global modelling experiments [10] and time-

series data [11] reveal that the upper ocean is already warming in

many regions (excluding upwelling regions, [12] and is highly

likely to continue warming as a result of a changing climate.

The temperature of the upper ocean is a fundamental control

on phytoplankton metabolic processes [13,14] and sets the

biogeographical boundaries or biomes of major phytoplankton

groups [15,16]. As such, temperature response functions of

phytoplankton are included in several widely used productivity

models [17], leading to sensitivity in global primary production

models to projected warmer surface ocean temperatures [6].

Furthermore, experiments in which multiple environmental

properties are manipulated reveal that temperature has significant

interactive (i.e. synergistic or antagonistic) effects with other

properties such as carbon dioxide and/or iron concentrations, and

on phytoplankton processes such as growth, photo-physiology, and

calcification [18,19,20,21]. There have been several syntheses of

temperature versus growth rate relationships for a range of

laboratory-cultured phytoplankton [22] to look at generic

relationships across a wide range of ocean temperatures. However,

most comparative studies examining the influence of temperature

on phytoplankton physiology were conducted several decades ago

[23,24] and so such syntheses have had to rely upon available

datasets that were collected using a range of protocols, both for

culturing and estimation of growth rates. Moreover, many of the

lab-cultured isolates used in these studies were isolated from the

coastal ocean and/or were long-institutionalised (i.e. decades), and

easily cultured ‘‘weed’’ species [22].

At present, there is a growing disjoint between the proliferation,

improved accuracy and resolution of model projections of how

oceanic conditions will change in the next 4–5 decades [25], and

the availability of physiological datasets needed to contextualise

such environmental projections. For example, the availability of

datasets describing both the temperature optima for phytoplank-

ton growth and the thermal limits (termed thermal niche width) at

which pronounced decreases in physiological performance occurs,

is limited, particularly for open ocean phytoplankton groups that

drive major biogeochemical cycles [26]. Moreover, because

different experimental approaches have been used to conduct

laboratory culture experiments and calculate growth rates, the

validity of comparing many of the datasets is questionable.

Obtaining datasets that reveal the fundamental responses of

organisms to altered ocean conditions, such as temperature, that

are well-replicated across relevant physiological or environmental

ranges for specific organisms is time-consuming, and funding may

be difficult to obtain due to perceptions that such research has

already been conducted in previous decades [22] or is unneces-

sarily simplistic.

However, these datasets are fundamental for parameterising

models to make informed projections of how oceanic biota and

ecosystems will respond to change in the many biomes that make

up the global ocean [15]. Given that global change is occurring,

and is highly likely to continue do so in the coming decades, we

cannot afford to delay obtaining and employing such datasets to

advise our models [27].

A recent development in other major disciplines, faced with

similarly complex systems, has been the adoption of a community-

based approach to tackle the issues associated with a daunting

number of permutations. In the disciplines of astronomy [28] and

biochemistry/protein-folding [29] unprecedented rapid progress

has been made through implementation and fostering of such

community-wide initiatives. We maintain that in order to address

issues of complex system science – e.g., multiple oceanic biomes

with many different phytoplankton species, and a wide range of

potential algal responses to environmental change – such

community-wide efforts are necessary. However, because sufficient

data relating to phytoplankton responses to climate change

variables do not exist we carried out a pilot community-wide

laboratory study. As part of this study we established a common

laboratory approach for conducting experiments and then using

this approach, we measured growth responses of cultured

representatives from key phytoplankton groups to temperature.

Cultured isolates were examined originating from polar to

tropical oceanic regions, and from coastal to remote offshore

waters (Table 1). The phytoplankton included eukaryotes such as a

Southern Ocean diatom, isolated in waters of ,3uC and used for

iron and photo-physiology studies [30,31] to prokaryotic nitrogen

fixers (diazotrophs), isolated from tropical oligotrophic waters,

being investigated for their response to ‘‘greenhouse’’ ocean

conditions (i.e. a higher CO2 warmer ocean, Fu et al., unpublished

data, Hutchins et al. unpublished data) (Figure 1a). Other

nearshore non-diazotrophic cyanobacterial species also being

examined for their response to future ocean conditions (higher

temperature and pCO2; Ozmon et al., unpublished data),

provided a contrast with offshore species. In addition, eukaryotic

and mixotrophic dinoflagellate species involved in estuarine and

coastal harmful algal blooms (HABs) and nearshore eutrophication

were examined [32] as blooms of these groups of phytoplankton

are thought to be favored under future climate scenarios [33]. A

further contrast was provided between species in the diatom genus

Thalassiosira that have been comprehensively studied physiologi-

cally and genetically, such as Thalassiosira pseudonana [34,35,36],

Thalassiosira weissflogii [23,37,38] and Thalassiosira rotula [39,40] to

those about which relatively little is known – such as the small

diazotroph Crocosphaera watsonii [41] and the polar diatom Proboscia

enermis [42] that have only recently been isolated.

In addition to testing the efficacy of this community-wide pilot

study, this research provides insights as to how regional projections

of warming might alter the physiological performance of

phytoplankton groups/species that reside in distinctly different

biomes across the world ocean (Figure 1). Our study also enables a

comparison with a recent collation [43] of published data on

phytoplankton temperature versus growth rate relationships that

were made with a wide range of experimental protocols. It is

critical to establish the value of such syntheses of the earlier

literature, whether we can use their parameterizations describing

physiological growth response of different phytoplankton to

temperature, and assess if we can relate these parameterizations

to modelled projections of primary production and biogeographic

distributions in response to regional warming. Our dataset

provides an example of what is required to better parameterise

models and predict how phytoplankton (as well as other microbial

and planktonic groups) will be affected by changing temperatures

[44,45,46] and hence the degree to which pelagic ecosystems will

be potentially restructured in the future.

Ocean Survey of Microalgal Thermal Reaction Norms
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Results

Temperature Growth Curves
The growth curves (hereafter termed reaction norms) for each

species or strain are presented for polar and temperate species in

Figures 2 and 3, and for tropical species in Figure 4 (see also

Figures S1 and S2). The maximum growth rates ranged from 0.3

to 1.4 d21 for the polar and temperate species, and were ,0.3 d21

for all of the tropical nitrogen fixers (Figures 2, 3, and 4). The

shapes of the reaction norms varied considerably from strongly

asymmetric for the polar diatom to a more symmetric response for

warmer water species and strains. Interspecific differences in the

reaction norms were determined using species for which multiple

strains were examined and a bootstrapping approach. The

reaction norms of remaining species, where just a single strain

was examined, were compared qualitatively. We first describe the

main features of the reaction norms for all species, and then

provide a statistical comparison of species with multiple strains.

The reaction norms of the diatoms species examined differed

considerably. For the polar diatom (Figure 3D), a temperature

increase of 3uC (relative to the isolation temperature ,3uC, c.f.

Figure 1B) resulted in a 25% increase in growth rate (m d21), but

then a further 1uC of warming caused a rapid decrease in m
followed by mortality. All three temperate diatom species (Figures 2

and 3 C) had broadly similar shaped reaction norms, exhibiting up

to a four-fold increase in m as temperatures increased but no

further increases in growth rates at temperatures .20uC, or 25uC
in the case of Thalassiosira rotula (Figure 2).

For the tropical species, the unicellular nitrogen fixing isolates

(Crocosphaera watsonii) had a similar reaction norm curve to the

ubiquitous cyanobacterium Synechococcus (Figure 3A), a non-

diazotrophic unicellular cyanobacteria, as did the three diazo-

trophic Trichodesmium isolates (Figure 4). Each diazotroph had a

plateau in growth rate at 24 to 28uC. Growth rates dropped off at

the upper end of this temperature range in a similar manner for

both the unicellular and colonial nitrogen fixers (i.e. to zero by

35uC). However, compared to Crocosphaera the biggest difference

between these reaction norms is that Trichodesmium has lower

minimum temperature limits and lower maximum growth rates

(Figure 4).

Table 1. The provenance, distribution and environmental relevance of each of species/strains used in this study.

Species/strains Provenance Environmental relevance Regional distribution

Akashiwo sanguinea (4 strains) Isolated (2006 to 2010) during Harmful
Algal Bloom (HAB) events in NE Pacific
BWA (NWFSC-605): 48.27uN, 124.68uW
GBB: 47.90uN, 124.63uW RMB: 36.96uN,
122.01uW YRB: 33.84uN, 118.39uW

Dinoflagellate implicated in two large-scale
HAB events possibly due to changing
environmental conditions [71,73,105]

Mid-latitude coastal waters,
including the Black Sea

Thalassiosira weissflogii CCMP1053, 39.50N 9.33W, isolated
in 1973

Very cosmopolitan coastal species that
grows under a wide variety of environmental
conditions. Very well studied (physiology,
environmental conditions), partial genetic
sequence

Coastal Atlantic, Pacific, Asian waters

Thalassiosira rotula (6 strains) JpnTR18: 34.17 N, 133.33 E, Isolated in
2007 CCMP3264, 40.49N 14.14E, isolated
in 2008 CCAP1085_21, 40.956 N, 14.25 E,
isolated in 2008 P17F4, 49.65N, 127.44W
isolated in 2007 CMP3096, 49.65N
127.43W, isolated in 2007 CCMP1647,
40.95N, 14.25E, isolated in 1993

Cosmopolitan diatom in near-shore and
some offshore regions that grows under
a wide variety of environmental conditions
and can form large blooms.

Temperate waters

Thalassiosira pseudonana (6
strains)

CCMP 1011, 17.79N, 64.82E CCMP
1012, 31.99S, 115.83W CCMP 1013
(53.28N, 3.83W) CCMP 1014 (28 N, 155E)
CCMP 1015 (48.54N, 123.01E), CCMP
1335 (40.76N, 72.82E)

Cosmopolitan diatom in near-shore regions
that grows under a wide variety of
environmental conditions and can
form large blooms.

Temperate waters

Proboscia inermis Isolated in the Pacific sector of S. Ocean
(16uS 145uE), austral summer 2002
(see [30])

Large diatom, bloom former Southern Ocean polar

Trichodesmium erythraeum Tricho RLI,1997 Tricho KO4, 2006 Tricho
2175, 2007

Colonial N fixer Great Barrier Reef
S Pacific 15u03 S; 155u02 E W
Equatorial Atlantic 7u32 N; 49u15W

Crocosphaera watsonii Cro WH 3A, March 2002
Cro WH84, March 2002 CroWH0005
March 2000

Unicellular N fixer (3–4.5 mm) North Atlantic 6u58.78 N; 49u19.70 W
South Atlantic 11u42.12 S; 32u00.64
W North Pacific 21u25.98 N;
157u47.29 W

Coastal Synechococcus
(CCFWC 502) Cro WH84

West Florida Shelf and was obtained
from Florida Wildlife Research Institute
(FWRI) and maintained on f/2 medium
[34] 4.5 mm, March 2002

Unicellular picophytoplankton Atlantic 11u42.12 S; 32u00.64 W

Prorocentrum donghaiense
CroWH0005

March 2000 Coastal dinoflagellate (4.3 mm) Changjiang River estuary, coastal
areas of Zhejiang province and
Guangdong province and Hong
Kong, Japan and South KoreaNorth
Pacific 21u25.98 N; 157u47.29 W

doi:10.1371/journal.pone.0063091.t001
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The dinoflagellate, A. sanguinea, displayed maximum growth

rates at 25uC and an upper temperature limit of 30 to 33uC
(Figure 2). Attempts to grow the strains at 35uC failed repeatedly

with some strains remaining vegetative (but with no discernible

growth) followed by mortality. All strains had robust growth rates

at 15uC. Attempts to grow the strains at 10uC resulted in little/no

growth but with all strains maintaining vegetative populations,

indicating a lower temperature tolerance (for growth) of between

10–15uC and an ability to survive at relatively low temperatures

compared to the thermal optimum. The dinoflagellate P.

donghaiense exhibited a ,3-fold increase in growth rate between

15 and 20uC, then exhibited ,15% decreases in growth rate at

30uC (Figure 3B).

Intraspecific Variations in Growth Rate
Multiple strains were examined for the dinoflagellate A. sanguinea

and the diatoms Thalassiosira rotula and Thalassiosira pseudonana at

temperatures ranging from 4uC to 35uC. The coefficient of

variation (CV) was examined to assess variability within species at

each temperature. For A. sanguinea, the CV ranged from 8–82%

over a temperature range of 15–33uC (Table 2). The CV for

Thalassiosira pseudonana ranged from 8% to 133% across a range of

10 to 32.5uC. For Thalassiosira rotula, the CV had a range of 9–53%

across a temperature range of 4–25uC (no growth at 30uC). In

general, these species exhibited more variation in growth rates

among strains at the low and high temperature extremes (Table 2).

For example, in A. sanguinea the upper temperature boundary

(33uC) had a CV that was an order of magnitude higher than the

Figure 1. Summary of the locations at which the species/strains were initially isolated. A) Overlaid (locales denoted by white stars) on a
global map of satellite sea surface temperature (uC, from World Ocean Atlas, [91]); B) Projected surface ocean temperature changes for the early and
late 21st century relative to the period 1980–1999. The global average surface ocean temperature change is plotted against the relative probabilities
of estimated global average warming from several different AOGCM and Earth System Model of Intermediate Complexity. The data are for average
projections for the B1, A1B, and A2 SRES scenarios. Plot is from IPCC AR4 [104].
doi:10.1371/journal.pone.0063091.g001

Figure 2. Thermal reaction norms for multiple strains of Thalassiosira rotula (left panel) Akashiwo sanguinea (central panel) and
Thalassiosira pseudonana (right panel) used in our study.
doi:10.1371/journal.pone.0063091.g002
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mid-range of the reaction norm (20uC). As noted above, strains

also exhibited varying survival at the lowest and highest

temperature ranges. Contrary to what one might expect, the least

and greatest reduction in growth at elevated temperatures (33uC)

occurred in the most northerly strains (BWA and GBB) (Figure 2

middle panel), both isolated from the state of Washington, while

the most southerly strain (YRB) showed the least sensitivity to low

temperature (15uC), suggesting that geographical location does not

necessarily correlate with optimal conditions for these coastal

strains. This highlights the importance of evaluating multiple

strains for a given region, since substantially different results would

be obtained for the two isolates from Washington if one of those

strains were used as representative of the species.

The N2 fixers, C. watsonii and T. erythraeum generally had lower

ranges of CV’s across their temperature range (17–24% and 8–

33%, respectively) than for the temperate diatoms. With few

exceptions, there were significant differences in growth rates

among strains within a species (p,0.05, Table 2). At every

temperature tested, there were significant intraspecific differences

in m amongst Thalassiosira rotula strains and C. watsonii strains. For

Thalassiosira pseudonana, A. sanguinea and T. erythraeum, significant

differences in growth rate occurred at every temperature except

15, 20 and 24uC, respectively (Table 2).

The reaction norm curves for each species provided the

opportunity to examine growth response over a range of

temperatures. For example, each of the strains of the cosmopolitan

diatom species Thalassiosira rotula (Table 1) was characterised by

Figure 3. Thermal reaction norms for tropical to polar phytoplankton (single strains) used in our study.
doi:10.1371/journal.pone.0063091.g003

Ocean Survey of Microalgal Thermal Reaction Norms

PLOS ONE | www.plosone.org 5 May 2013 | Volume 8 | Issue 5 | e63091



similar reaction norms, except for an isolate from the Mediterra-

nean (CCMP 1647, isolated in 1993 as opposed to post 2007 for

the other strains), which survived under a narrower range of

temperatures than the others. Other strains isolated from the

Mediterranean (CCAP 1085_21, CCMP 3264) had broader

reaction norms. Strains of the temperate dinoflagellate A. sanguinea

(isolated from the N Pacific, Table 1) exhibited strikingly different

reaction norms with respect to temperature. For example strain

YRB continued to grow at rates close to mmax at temperatures

.25uC, whereas strains BWA and GBB had a pronounced

decrease in m above 26uC. In the case of Thalassiosira pseudonana,

the six strains appear to split into two groups in their temperature

responses. Strains CCMP 1011 and 1012 have lower optima and

narrower niches than CCMP 1013, 1014, 1015 and 1335

(Figure 2, right panel). However, these groupings appear to be

unrelated to the different locales that they were isolated from.

Interspecific Variation in Thermal Traits
The five species for which multiple strains were tested (A.

sanguinea, C. watsonii, Thalassiosira pseudonana, Thalassiosira rotula, and

Trichodesmium erythraeum) differed significantly in their trait distri-

butions (Table 3). The distribution of delta AICc values enabled us

to evaluate whether interspecific differences in thermal traits

existed, and permitted us to incorporate our uncertainty in the

model fits. For both optimal temperature and maximum growth

rate, the 95% confidence intervals on the delta AICc were .0

indicating significant differences among species for these traits

(Table 4). The confidence intervals for temperature niche width

overlapped with zero, indicating that distributions of niche width

cannot be easily distinguished based on species identity. However,

this may be because our uncertainty in this trait is large (as

estimated from the distribution of this trait in the bootstraps,

Table 3), particularly in the case of T. pseudonana, T. rotula and A.

sanguinea.

Intraspecific Variations in Thermal Traits – Comparison
with the Literature

Of the eight species investigated in this study, we found

previously published growth-temperature data for five common

species (Table 5). For thermal niche width, there was less

agreement between our study and prior published data

(Figure 5). For example see C. watsonii, where the niche width is

twofold larger from the prior literature relative to our study. In

contrast, the thermal trait Topt (Figure 6) was similar to previously

published values for T. erythraeum and Crochosphaera, lower than

previously reported for Thalassiosira rotula, and higher for

Thalassiosira pseudonana and A. sanguinea. A comparison of maximum

growth rates between the present and prior studies revealed

significant differences for four of the five common species

(Figure 7). In most cases, we investigated more strains than

investigators did in the prior literature and hence we see greater

variability in each of these thermal traits in the present study

(Figures 5, 6, and 7; Figures S3, S4, S5, and S6).

Discussion

Although we were able to characterise the thermal reaction

norms of only a small subset of the resident phytoplankton in the

global ocean in this illustrative community-wide experiment, they

provide valuable insights into how a warming ocean could

influence marine floristics. They also enabled us to conduct the

first (as far as we are aware) evaluation of how much confidence

we should have in exploiting the rich datasets of the prior

physiological literature, and raise some issues about how best to

relate such physiological data to the future temperature projections

from climate change models. Hence they offer some lessons on

where we should focus our efforts in future community-wide

experiments.

Figure 4. Thermal reaction norms for multiple strains of the tropical a) Trichodesmium erythraeum; b) Crocosphaera watsonii
phytoplankton used in our study.
doi:10.1371/journal.pone.0063091.g004
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Reaction Norm Shape – Implications for Biogeographical
Change

The two open ocean end-members are the polar diatoms and

tropical diazotrophs, which span a temperature range of 2.4 to

27.5uC that is comparable to that presented in well-cited collations

[22,23]. They represent two groups that play a key role in the

biogeochemical cycles of N, C, Fe and Si [47,48,49]. The first

comparison of reaction norms of unicellular and colonial

diazotrophs reveals marked differences between these groups in

maximum growth rates and thermal optima that will have

implications for future floristic shifts within the diazotroph

assemblage (Fu et al., unpublished data). Such a range of

temperature reaction norms (Figure 4) supports indirect evidence

from oceanographic surveys of the role of environmental

conditions in setting the relative distributions of different

diazotroph groups [50]. Such floristic shifts (Fig. 3) will certainly

have ecological consequences (different pathways for N fixed by

uni-cells versus colonial diazotrophs, [8]. Moreover, as thermally-

tolerant non-diazotrophic groups may replace N2 fixers, as annual

temperature ranges begin to exceed the maximum limits of the

diazotrophs, there may also be biogeochemical ramifications of

such floristic shifts 51,52] (Figure 4). These datasets provide some

of the first direct physiological evidence of the potential to alter

biome boundaries, as predicted by models based on previously

available relatively poor physiological details for different phyto-

plankton functional groups [53].

Although we have data for only one polar diatom (P. inermis,

Table 1), the reaction norm reveals that warming could have a

detrimental effect on Southern Ocean diatoms by the end of the

century if this species is representative (Table 6) as this species

Table 2. Number of strains measured, mean growth rate and coefficient of variation amongst strains for each species and
temperature.

Species Temperature Number of strains
Mean growth rate
(m day21)

Coefficient of
Variation (%)

ANOVA
p value

Akashiwo sanguinea 15 4 0.24960.044 17.7 ,0.001

Akashiwo sanguinea 20 4 0.32960.026 7.9 0.272

Akashiwo sanguinea 25 4 0.39160.053 13.6 ,0.001

Akashiwo sanguinea 30 4 0.26260.067 25.6 ,0.001

Akashiwo sanguinea 33 4 0.09260.075 81.5 ,0.001

Crocosphaera watsonii 22 3 No growth

Crocosphaera watsonii 24 3 0.30460.060 19.7 ,0.001

Crocosphaera watsonii 26 3 0.41460.100 24.2 ,0.001

Crocosphaera watsonii 28 3 0.45860.088 19.2 ,0.001

Crocosphaera watsonii 32 3 0.40860.070 17.2 0.001

Crocosphaera watsonii 35 3 No growth

Thalassiosira pseudonana 10 6 0.41260.139 33.7 ,0.001

Thalassiosira pseudonana 15 6 0.66260.103 15.6 0.803

Thalassiosira pseudonana 20 6 1.09060.082 7.5 ,0.001

Thalassiosira pseudonana 25 6 1.29060.154 11.9 0.025

Thalassiosira pseudonana 30 6 0.93460.556 59.5 ,0.001

Thalassiosira pseudonana 32.5 6 0.23660.313 132.6 ,0.001

Thalassiosira rotula 4 6 0.22760.120 52.9 ,0.001

Thalassiosira rotula 10 6 0.53160.116 21.8 0.005

Thalassiosira rotula 17.5 6 0.75960.128 16.9 0.031

Thalassiosira rotula 25 5 0.61160.056 9.2 0.021

Thalassiosira rotula 30 5 No growth

Trichodesmium erythraeum 16 3 No growth

Trichodesmium erythraeum 18 3 0.06460.021 32.8 ,0.001

Trichodesmium erythraeum 20 3 0.12060.019 15.8 0.001

Trichodesmium erythraeum 22 3 0.16260.027 16.7 0.013

Trichodesmium erythraeum 24 3 0.26460.020 7.6 0.071

Trichodesmium erythraeum 26 2 0.27960.026 9.3 0.029

Trichodesmium erythraeum 28 3 0.27560.027 9.8 0.004

Trichodesmium erythraeum 32 3 0.19460.040 20.6 0.004

Trichodesmium erythraeum 35 3 No growth

Analysis of variance was used to test for intraspecific differences in growth rates at each temperature examined (a= 0.05). Temperatures at which intraspecific variation
was not significant are listed in bold.
doi:10.1371/journal.pone.0063091.t002
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would be at or beyond its thermal limit with a 3.5uC rise in

temperature (Table 6, Figure 1B). Although there are few prior

studies of the temperature ranges of Southern Ocean diatoms [53],

at least one study [54] reports a similar growth temperature range

of 2 to 9.2uC for a Chaetoceros sp. isolated from the Southern

Ocean. The reaction norm for the Southern Ocean diatom

highlights the lack of oceanic refugia (i.e. colder waters) for these

polar species, and raises uncertainties as to whether such a

geographically-isolated phytoplankton group (i.e. South of a major

physical barrier, the Polar Front) which has a very different photo-

physiology [31] can acclimate or adapt on a timescale of decades

to warming temperatures. By extension, it is unclear which

phytoplankton group(s) might emerge or replace diatoms if they

become extinct and how such a floristic shift will affect

trophodynamics. Potentially coccolithophores could play expand

their range and there is some recent evidence that in the

Subantarctic this group is extending their southerly extent [55].

Shifts between diatoms and calcifying phytoplankton could also

have major biogeochemical implications for the Southern Ocean

Si and C cycles.

There are major uncertainties in global environmental change

research that are difficult to tackle in the confines of laboratory

research. For example, far less than 1% of phytoplankton taxa

are in culture or culturable and many of those in culture have

been cultivated for thousands of generations (decades). Choosing

representative species appears daunting as over 40,000 phyto-

plankton species are described, with thousands more to be

discovered [56]. However, by focusing on the major contribu-

tors to primary production i.e. phytoplanktonic functional

groups in the ocean (cyanobacteria, diatoms, coccolithophorids

and dinoflagellates), the list can be narrowed [57]. Within each

of those groups, representative species that are important

contributors to bloom formation, downward carbon flux, and

enhancement of upper ocean N inventories are logical targets

Table 3. Statistical comparison of the bootstrapping results for each of the three thermal traits Temperature optima, Maximum
growth rate and temperate niche width (w).

Species Strain
Temp. opt.
upper. CI

Temp. opt.
lower.CI

Max.growth.
upper. CI

Max. growth.
lower. CI w. upper.CI w. lowerCI

T. erythraeum KO4_20 27.69 26.73 0.28 0.26 19.32 17.79

GBRTRLI101 29.57 27.72 0.34 0.30 34.18 18.35

21_75 27.61 26.13 0.28 0.25 17.45 16.48

C. watsonii WH005 29.84 26.48 0.51 0.40 16.40 12.65

WH84 30.02 26.35 0.52 0.40 16.34 12.69

3A 30.17 28.43 0.41 0.35 14.35 12.87

P. inermis 4.32 2.97 0.35 0.30 59.39 1.16

A. sanguinea RMB 22.72 21.46 0.36 0.33 24.11 22.30

YRB 26.54 24.81 0.40 0.38 99.50 37.51

GBB 25.86 23.09 0.44 0.39 63.95 24.58

BWA 23.01 21.16 0.37 0.33 28.07 23.16

P. donghaiense 28.45 27.26 0.70 0.63 29.02 24.49

T. pseudonana CCMP1011 23.98 19.15 1.15 0.86 47.24 22.52

CCMP1012 24.23 20.64 1.30 1.06 27.99 22.45

CCMP1013 26.97 25.99 1.52 1.40 62.20 27.91

CCMP1014 27.16 25.96 1.63 1.41 103.30 42.20

CCMP1015 27.12 26.17 1.59 1.40 93.39 46.09

CCMP1335 27.44 25.89 1.57 1.29 87.04 32.95

T. rotula JPNTR18 19.10 18.21 0.71 0.69 50.76 37.04

CCMP3096 19.67 18.66 0.76 0.73 41.49 33.09

CCMP1647 21.27 21.07 0.78 0.77 26.05 25.84

CCMP3264 19.92 17.89 0.86 0.79 32.24 28.35

CCAP1085_21 19.22 19.04 0.80 0.79 31.85 31.31

T. weissflogii CCMP1053 20.04 19.33 0.70 0.66 21.47 20.34

Synechococcus CCFWC 502 36.46 31.88 0.78 0.70 48.70 29.17

CI denotes confidence interval.
doi:10.1371/journal.pone.0063091.t003

Table 4. Boot-strapping results for the five species with
multiple strains that we studies.

Trait delta AICc lower CI delta AICc upper CI

T. Optimum 33.14 45.93

Niche width -4.93 15.96

Max growth rate 49.26 59.79

If the entire 95% confidence interval of AICc values exceeded zero, we
concluded that species identity was a useful predictor and that species differed
in the distribution of the trait.
doi:10.1371/journal.pone.0063091.t004
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for laboratory research. For example, we focused on diatoms

that comprise the Thalassiosira spp. such as Thalassiosira rotula,

because they are an important contributor to bloom formation

[39,58] and Thalassiosira pseudonana, because it is one of the best-

studied physiological model species [37,59] with a fully

sequenced genome [36]. Understanding the growth responses

of additional genera that are central to biogeochemical cycling

such as the coccolithophores in the genus Emiliania and diatoms

in the genus Chaetoceros will provide important data for

understanding phytoplankton response to climate change.

It is also likely that species dominance will alter with

changing environmental conditions, leading to the appearance

of new and likely unstudied organisms that will need careful

physiological characterization. For example, the diatom species

Neodenticula seminae was sampled in large numbers from North

Atlantic waters in 1999 and has become established there over

the last decade [60]. This is the first recorded presence of N.

seminae in the Atlantic in over 800,000 yrs. The ‘‘invasion’’ of

this diatom is thought to reflect increasing transport of Pacific

waters into North Atlantic waters via the Arctic[60].

One confounding issue of using representative species for

phytoplankton functional types is the major differences in

reaction norms (Figure 2), between strains for each species we

considered. These trends of different thermal reaction norms

potentially have parallels in recent studies that report differential

responses to CO2 enrichment among strains of coccolithophores

[61,62], and diazotrophic cyanobacteria (Hutchins et al. unpub-

lished data). In diatoms, significant inter- and intra-specific

variation exists in response to many factors, including light

intensity [63,38,64]. Our datasets on temperature and diazo-

trophs suggest that within each genus (i.e. unicellular or

colonial), reactions norms differed among strains, albeit to a

small degree (Table 3). There were also marked differences in

thermal optima between genera, illustrating the dangers of using

a sole strain of a cultured phytoplankton species to represent an

entire phytoplankton functional group in ecosystem or biogeo-

chemical models. However, we may be more optimistic about

parameterizing models at the species level: there is broad

similarity in the shape of strains’ reaction norms within a

species (Figures 2 and 4, Table 3). This may reflect selection on

different taxa to maintain particular ‘shapes’ or underlying

constraints in their ability to adapt to different temperature

environments. More importantly, it suggests that we may

justifiably parameterise biogeochemical models with traits of

Table 5. Summary of the environmental conditions used to culture phytoplankton species and strains in the present study.

Protocol

Organism Laboratory A. B. C. D. E. F. G. H.

Trichodesmium spp.,
Crocosphaera spp.

Hutchins/Fu Yes Yes (6 replicates) Yes Yes (150) Yes Yes Yes No15

Thalassiosira pseudonana Litchman Yes Yes (6 replicates) Yes Yes (100) Yes6 No8 No12 No15

Proboscia inermis Boyd/Strzepek Yes Yes (6 replicates) Yes Yes (90) Yes Yes9 No12 Yes

Prorocentrum donghaiense;
Synechococcus

Mulholland No1 Yes Yes4 Yes (35;
100)

Yes No10 Yes13 Yes

Akashiwo sanguinea Kudela No2 Yes (5 replicates) Yes Yes (125) Yes Yes Yes14 Yes

Thalassiosira weissflogii Passow No1 Yes (4 replicates) Yes5 No (35) Yes7 Yes Yes14 Yes

Thalassiosira rotula Rynearson No3 Yes (3–5 replicates) Yes No (112) Yes No11 Yes 14 Yes

A. Growth rates were determined at a minimum of six temperature conditions. B. A minimum of three replicate growth rates were determined. C. All other
environmental variables were held constant within each individual experiment, other than temperature. These include day length, culture medium, and culture
protocols. Saturating nutrients were used to avoid nutrient-induced growth limitation. D. Isolates grown at saturating light intensity (mmol quanta m22 s21). E. Semi-
continuous cultures were diluted using media that was previously adjusted to the appropriate temperature. Dilution frequencies were set so that cells were maintained
in constant exponential growth phase and growth rates were reported when cultures were fully acclimated to the experimental conditions, after statistically invariant
growth rates were recorded for at least 3–5 generations [98] F. Upper and lower thermal limits were tested repeatedly (at least 3 times) G. Multiple biomass parameter/
proxies were used to determine daily abundance and included cell counts, extracted chlorophyll a, and in vivo chlorophyll a fluorescence. Each method could be used
reliably to determine steady-state acclimation. H. At each temperature, the maximum acclimated specific growth rate (d21) for each isolate was determined by
regressing the change in the log of fluorescence, cell count or chlorophyll a over time and testing the equality of slopes from at least three serial cultures (a= 0.05) [99].
If slopes of serial growth curves were not significantly different, the average regression coefficient was used to estimate the common slope, which represented the
average acclimated growth rate and the standard error.
Footnotes:
1Growth rates were determined at five temperatures.
2Growth rates were determined at 4 temperatures. Cells failed to grow at 35uC and reliable growth estimates could not be obtained at 10uC.
3Growth rates were determined for 4 temperatures, cells exhibited no growth at 35uC.
4Isolates also grown in 4 different nitrogen species (nitrate, ammonium, urea, and glutamate).
5Carbonate system also held within a specific range at ambient conditions.
6Recorded growth for 5 days after acclimation (not necessarily 3–5 generations).
7After .8 generations.
8This was performed for upper limit only.
9Upper limited tested repeatedly. Lower limit was below 0uC, the lowest temperature tested.
10Upper and lower limits were tested for P. donghaiense, however only lower limit was tested for Synechococcus. Upper and lower limit tests were performed twice, not
three times.
11This was performed for upper limit in all isolates, and in one isolate for the lower limit.
12Fluorescence alone was used.
13In vivo fluorescence reported, but Chl measured at the first and last culture days, as well as PN and PC.
14Growth rates were determined using in vivo fluorescence, but were not significantly different from growth rates determined using cell counts.
15Significant differences between slopes of replicate cultures were not tested. Instead, the mean slope was used. Variation within a temperature treatment was much
smaller than variation between temperatures.
doi:10.1371/journal.pone.0063091.t005
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Figure 5. A comparison of the thermal trait, niche width (6C) using box and whisker plots, between previously published studies
(using a wide range of experimental protocols, see [43]) and the species/strains used in the present study. The black bands denote the
median value, the bottom and top of the red/blue boxes represent the 1st and 3rd quartile of the data respectively. The ‘whiskers’ extending from the
boxes indicate the positions of the lowest & highest values in the data. If the sample size is small enough, the whiskers may not appear (e.g. if there
are only 3 equally spaced points, the value represented as the 1st quartile is the lowest value).
doi:10.1371/journal.pone.0063091.g005

Figure 6. A comparison of the thermal trait, Topt (6C) (box and whisker plots), between previously published studies (using a wide
range of experimental protocols, see [43]) and the species/strains used in the present study. For details see Figure 5 caption.
doi:10.1371/journal.pone.0063091.g006
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important species even in the absence of a strong understanding

of their intraspecific variation.

Differential Physiological Responses to Warming
between Strains

A further major challenge in global environmental change

research is to understand why the reaction norms of multiple

strains of the diatoms Thalassiosira rotula and Thalassiosira pseudonana

and the dinoflagellate A. sanguinea differed. For example, one of six

Thalassiosira rotula strains was unable to grow at 4uC and had a

significantly higher optimal growth temperature than other strains

of Thalassiosira rotula. This strain was isolated (,20 years ago) from

the Mediterranean and it is tempting to link its growth response to

its provenance. However, the reaction norms of the other two

Mediterranean strains tested were more similar to strains sampled

from northern temperate regions. This highlights the importance

of examining multiple strains from a single region, particularly

when testing for region-specific responses to environmental

change.

Within species, the variation of growth rates amongst strains

changed considerably with temperature. For example, the

coefficient of variation (CV) amongst Thalassiosira rotula strains

was fivefold greater at the low end of its temperature tolerance

than at the upper end. In A. sanguinea, higher CV’s were observed

at the high end of its temperature tolerance than the middle. In

general, variation among strains in both diatoms and dinoflagel-

lates was lowest (7–17%) near the optimal growth temperature.

This is comparable to previously observed intra-specific CVs of 5–

15% in diatoms [63] and 13–39% in dinoflagellates [65] at near-

optimal growth temperatures. In contrast, variation amongst

strains was often highest at the extremes of temperature tolerance

suggesting that genotypic selection pressures would have the

largest influence at these points.

In the case of A. sanguinea, the temperature-growth response is

similar to the trends presented in [66] who reported optimal

growth rates at 25uC and a salinity of 20, but with positive growth

from 10–30uC and salinities from 10–40. Dinoflagellates are

classified as ‘‘modified latitudinal cosmopolitan’’ [67] and true

endemism is rare [68]. A. sanguinea follows this pattern and is

widespread, observed along the west coast of the United States

[69,70,71,72,73], the Gulf of Mexico [74], Brazil [75], Peru [76],

Hong Kong [77], Japan [66], Korea [78], and the Black Sea [79].

While several hypotheses have been put forward regarding their

range expansion including dispersion of vegetative cells either

naturally or by ballast-water transport, there have been no genetic

studies to date that provide population structure or gene flow,

although microsatellite markers have been developed [80]. While

the relatively uniform temperature-growth responses [66,69] (this

study) are consistent with the classification of this species as

eurythermal, we note again the strain variability at the low and

high end of the temperature range. This strain variability suggests

Figure 7. A comparison of the maximum specific growth rate (day21), using box and whisker plots, between previously published
studies (using a wide range of experimental protocols, see [43]) and the species/strains used in the present study.
doi:10.1371/journal.pone.0063091.g007

Table 6. A summary of projected increases in global sea
surface temperature for 2020–2029 (relative to 1980 to 1999)
and for 2090–2099 (relative to 1980 to 1999) from three IPCC
scenarios [104]).

SRES model
scenarios B1 (6C) A1B (6C) A2 (6C)

2020–2099 0.8 0.9 1.1

2090–2099 2.1 3.1 3.5

The A2 and A1B scenarios for CO2 emissions are very similar to that for
observed global emissions [106] and hence were used here for the comparison
in Figure 7.
doi:10.1371/journal.pone.0063091.t006
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that the widespread success of this organism in neritic waters is due

at least in part to substantial strain (genetic) variability within the

species. Successful expansion of this genera due to either transport

or changes in ocean climate may be largely dependent on the

strain(s) present within a given region.

Comparison of Our Findings to the Temperature Versus
Growth Literature

There is a large body of literature collected between 1962–2010

[43], but its value may be limited if there is too much confounding

interference due to the differing protocols employed across

individual studies. Our datasets provide some preliminary checks

and balances to appraise the worth of such prior datasets. The

thermal trait analysis reported in [43] differed from that carried

out on the species in our study in several ways.

Departures between the literature collation relative to the

present study may be related to the quality of the data used in this

thermal trait analysis (the literature provides a large repository of

data but of more uneven quality relative to the present study) and

allows us to characterize areas where efforts such as this study

would be most fruitful. For example, we found that differences in

optimum temperature for growth between our study and literature

estimates were small (Figure 6), suggesting that this trait is robust

across a range of experimental methodologies. In contrast, a

comparison of the maximum growth rates showed that this trait

varied more than for the others examined (Figure 7), likely due to

its higher sensitivity to experimental conditions, such as light

intensity [69] or composition of lab culture media [81].

Temperature niche width is a more difficult trait to characterize,

requiring measurements across a larger range of temperatures

than is typically feasible. Therefore, although we see large

differences in the distributions of this trait (Figure 5), this is likely

due to the high uncertainty in our estimates, rather than absolute

differences.

Despite some of the above methodological limitations, these

prior published estimates provide a ‘parameter envelope’ reflecting

uncertainty introduced through experimental and statistical

methods. This uncertainty provides valuable information that

can be incorporated when modelling phytoplankton populations

[82] and communities [83]. Models focusing on the community

level pose the greater challenge, as the uncertainty introduced by

measurements made under different environmental conditions

must be carefully accounted for (though this may require the

collection of additional data). We hope that in future, interactions

between temperature and other important parameters (e.g. light,

nutrients) will be better characterized, thereby constraining this

uncertainty further and improving our ability to model community

interactions.

Trait-environment Relationships
A recent synthesis study [42] reported found that optimum

temperature was strongly related to mean environmental temper-

ature, indicative of past adaptation. This pattern was not evident

in the present study, probably because of insufficient data from

high latitude isolates. In contrast, Thomas et al. did not observe

any clear relationship between temperature traits and environ-

mental variability. In our study we do see a positive saturating

relationship between temperature niche width and annual

temperature range, as predicted by the climate variability

hypothesis [84] (see Figure S7). However, intraspecific variation

in temperature traits is unrelated to environmental temperature

variation and we do not have evidence for local adaptation within

a species (see Table 3). This trait-environment relationship is

consistent with a simple ecological interpretation: that changes in

the temperature variability gradient, rather than local adaptation,

drives species turnover. Nevertheless, our study may also lack the

power to detect any effects of local adaptation.

Another obvious uncertainty in global environmental change

research is the capacity of phytoplankton to evolve new thermal

windows, or the lack of such evolutionary resilience [85]. In a

thermal experimental evolution study [26], used ‘‘ratchet’’

experiments (incremental increases in growth temperature) to

demonstrate differential abilities of phytoplankton groups to adapt

to increasing temperature. In general, they found that species from

continental lakes were able to adapt to large increases in

temperature compared to open ocean phytoplankton groups; for

instance, the globally distributed coccolithophore species Emiliania

huxleyi was one of the species that displayed little or no ability to

adapt to warming. Further evolutionary studies in regard to

thermal tolerance are called for, including studies focused on the

diversity of intraspecific responses. Long term evolutionary

inferences can also be made from biogeographical observations,

such as the lack of cyanobacteria or coccolithophores in polar

marine waters [86]. Evolution of higher temperature tolerance

may also be constrained by the existence of correlations and trade-

offs among traits and possible opposing selective pressures on

correlated traits [87].

Inferences about species range limits can be drawn using their

thermal reaction norms. These can be estimated under current

and future climate predictions, and aggregated to make predic-

tions about changes to diversity patterns and biogeochemical

processes. A recent analysis [43] found that ocean warming this

century is likely to lead to a decline in tropical phytoplankton

diversity, as many tropical strains, in the absence of evolution, will

be unable to survive even small increases in temperature. Merging

this approach with ocean biogeochemical models and data on

species’ growth vs. nutrient curves will allow us to make even more

fine-grained predictions of growth and possibly productivity of

different groups in the future. However, evolutionary responses to

temperature change need to be accounted for; experiments

subjecting different phytoplankton species to different thermal

regimes will prove valuable in estimating the rapidity of this

process in single species. Future experiments that subject mixed

phytoplankton communities to elevated temperature conditions

will also be needed, as species interactions can negatively influence

both rates of adaptation and productivity [88,89].

Merging Physiological Data with Climate Change Model
Projections

One of our aims was to exploit the growing datasets of climate

change projections from models which provide regional or global

maps of how ocean conditions, such as temperature, irradiance,

nutrient and trace metal supply, pH and carbon dioxide will be

altered in the coming decades [2,90]). In Figure 8 we attempt to

merge some of our physiological data for the two thermal end-

members – polar diatoms and tropical diazotrophs – with those of

model projections for warming from the most realistic IPCC

scenario –3.5uC warming by 2100 (Table 6; Figure 1B). This

comparison is instructive as it reveals that additional information is

required to merge the physiological and the model projections

with confidence. The red bars in Figure 8 denote the projected

increase in temperature based on the annual minimum and

maximum temperature for the regions in which the phytoplankton

were isolated [91]. Although information is available regarding the

in situ temperature at the locales where cells were isolated – for

example 3uC for the polar diatom, we do not know whether this

species successfully subsists from austral winter to austral summer,
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or whether it is succeeded by other species over the course of the

annual growth season.

Of course, beyond warming effects there are many other

uncertainties about how the coastal ocean will respond to climate

change. Additional anthropogenic pressures such as eutrophica-

tion, acidification, and alterations in salinity and irradiance

regimes will all impact HABs and other coastal phytoplankton

groups [92]. Consideration of these multivariate influences greatly

complicates predictions of the responses of complex natural

phytoplankton assemblages to environmental change [86]. In

addition, in the laboratory we are limited to examining individual

cultured isolates so we have little understanding of how the diverse

range of strains/ecotypes present in natural systems might confer

some stability or buffer ecosystems against such environmental

change [85].

Next Steps and Lessons Learnt
Although we devoted considerable effort to developing a

consensus-based experimental protocol, there were minor

departures from it by most participants, that this is one area

that can be improved upon. Such improvements, and the

development of a more educated community with respect to

protocol developments, are essential before we can tackle

methodologically more challenging manipulations – trace

metals, pH, or manipulation of multiple drivers concurrently,

or to increase the number of participating laboratories to .10.

This approach builds upon major efforts by the Ocean

Acidification community to advocate best methodological

practices [93] by being more proactive in developing commu-

nity-wide protocols. Such community-wide initiatives would

benefit from ‘hands-on’’ workshops similar to that conducted

regularly by the Group for Aquatic Primary Productivity (GAP)

workshops [94].

In climate change research there is an urgent need to alter

what sort of experiments we do – more emphasis should be

focused on community-wide experiments (in this short study we

conducted measurements of 675 growth rates from 9 species). If

we are to develop such community-wide initiatives we must also

deal with some of the intrinsic limitations of our existing science

culture, in that while collaborative efforts are often warranted

and even encouraged, all investigators also have a need to

demonstrate their individual productivity and creativity to their

peers, their employers, and their funding agencies. Thus, it may

be difficult to motivate researchers sufficiently in the long run

(i.e. years) to devote considerable effort and scarce funding to

obtaining collective datasets. The problem of inadequate

motivation to participate in community-based efforts could be

partially alleviated if there was a demonstrated interest by

funding agencies in funding for and recognition of the needs

and benefits of such community-wide research. These types of

funding issues are especially problematic for international

collaborative groups, due to the lack of coordination and

communication between national funding agencies. These

pressing issues and impasses have also been recognised recently

for the field of macro-ecology [95].

Materials and Methods

Rationale for Selection of Temperature Versus Growth
Rate

We designed a community-wide experiment examining the

effect of temperature on phytoplankton growth for two general

reasons. First, there is a high degree of consensus that there will be

significant changes in temperature based on projections from

climate change models (relative to other environmental properties

such as incident irradiance or trace metal supply where changes

are more uncertain, [86]. Second, it is relatively straightforward to

manipulate temperature in laboratory experiments using cultured

phytoplankton isolates (versus pH or CO2, [96,93] and hence this

variable is more amenable to developing and implementing a

common protocol for community-wide experiments. In many

Figure 8. Thermal reaction norms for the two end-members species from our study compared with predicted ocean warming
trends. Projected warming by 2020–2029 and 2090–2099 red bars (see Figure 1B) and temperature range (arrow) (from [91]), over the annual cycle is
overlaid on the two reaction-norms (0.9 to 4.3uC for the polar diatom and 23.7 to 28.3uC for the Crocosphaera strains).
doi:10.1371/journal.pone.0063091.g008
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cases, temperature is considered to be a master variable or

ultimately limiting property for phytoplankton growth [23,26].

The choice of growth rate as a physiological metric to measure

the effect of temperature was selected because it is fundamental to

the success of phytoplankton species and it ultimately integrates

phytoplankton physiology [37], since for an asexually reproducing

unicellular organism it represents the most direct measure of

reproductive success and therefore of fitness in the environment.

By directly measuring fitness (e.g. growth rate) over a range of

temperatures, a reaction norm can be described for each genotype

(culture isolate) with respect to temperature [97]. Ultimately, one

would describe reaction norms for each physiological variable

under a range of environmental conditions to understand both the

direct and interactive effects of factors that affect phytoplankton

growth.

Phytoplankton Species
The species used for this community-wide experiment in some

cases were those already being maintained in culture for other

experimental studies by each participating lab. They included both

eukaryotes (diatoms and dinoflagellates) and prokaryotes (cyano-

bacteria) collected from a range of environments including polar,

temperate and tropical waters (Figure 1A). A summary of the

provenance, distribution and environmental relevance of each

species/strain is provided in Table 1. For five species, up to six

strains were tested to get an estimate of intraspecific variation in

thermal traits (Table 2).

Lab Culturing Protocol
The following protocol was agreed upon by the participating

labs and generally implemented here. Inevitably there were minor

departures from this consensus-based protocol which are detailed

in Table 5. These departures were largely due to laboratory-

specific logistics and provide insights as to how future community-

wide manipulation experiments can be improved upon.

1) For each isolate, growth rates were determined at a

minimum of six temperatures for each growth curve.

2) A minimum of three replicate growth rates were determined

at each temperature.

3) All other environmental variables were held constant within

each individual experiment, other than temperature. These

include light intensity, day length, culture medium and

culture protocols. Saturating nutrient concentrations were

used in all experiments to avoid nutrient-induced growth

limitation. Light intensity varied among experiments but

was most often at saturating levels (determined based on a

range of approaches including PE curves and prior

investigation of irradiance versus growth responses) for the

particular culture isolate (Table 5). Each laboratory used

protocols that were most appropriate for the cultured

isolates they were working with. A description of culturing

conditions for each species is provided in Table 5.

4) Semi-continuous cultures were diluted using media that had

been pre-conditioned to the appropriate temperature.

Dilution frequencies were set so that cells were maintained

in exponential growth phase and the growth rates reported

are for cultures fully acclimated to the experimental

conditions, (e.g. after statistically invariant growth rates

were recorded for at least 4 generations [98]).

5) The upper and lower thermal limits for each species/strain

were determined by repeatedly (i.e. up to three times)

incubating cultures at temperatures at which they did not

grow (see Discussion).

6) Multiple biomass parameters/proxies were used to deter-

mine growth rates. These included: cell counts, extracted

chlorophyll a, and in vivo chlorophyll a fluorescence. Each

method reliably estimated biomass and growth rates, and

was used to ascertain when steady-state growth rates were

achieved, and to monitor the acclimation of the cultures as

outlined above.

7) At each temperature, the mean steady-state specific growth

rate (d21) for each isolate acclimated for at least four

generations, was determined by regressing and testing the

equality of slopes (i.e. temporal change in the log of

fluorescence, cell count or chlorophyll a) from at least three

serial cultures (a= 0.05) [99]. If the slopes of serial growth

curves were not significantly different, the average regression

coefficient was used to estimate the common slope, which

represented the average steady-state growth rate in cultures

acclimated to a specific temperature and the standard error.

We did not impose a standard method to generate the

temperature growth rate response curves. The individual

methods used are presented in Table 5.

8) For each species where multiple strains were examined,

analysis of variance was used to test for intraspecific

differences in growth rates at each temperature examined

(a = 0.05) and the coefficient of variation (CV) was

calculated to determine the extent of growth rate variation

among strains. Statistical analyses were performed in SPSS

V19 (IBM, Inc).

Estimation of the Thermal Reaction Norm Parameters
We used the following equation (modified from [100]) to

describe the thermal reaction norms of each strain:

f (T)~aebT 1{
T{z

w=2

� �2
" #

ð1Þ

where specific growth rate f depends on temperature, T, as well as

parameters z, w, a, and b. w is the temperature niche width, while

the other three possess no explicit biological meaning. We fit (1) to

the growth data for each strain using maximum likelihood to

obtain estimates for parameters z, w, a and b. In addition, we

estimated the optimum temperature for growth and maximum

growth rate by numerically maximizing the equation after

estimating the parameter values. Note, estimates of temperature

niche width for three T. pseudonana strains (CCMP 1014, 1015 &

1335) and one strain of A. sanguinea (YRB) are inflated because of

poor resolution of the lower limit for growth (see Results).

Thermal Trait Analyses
These analyses focused on three traits that describe the thermal

tolerance curve: optimum temperature for growth, temperature

niche width and maximum growth rate.
Comparison with literature traits. We tested for hetero-

geneity in intraspecific variance of all three traits using Levene’s

test centered by the median [101]. We also compared the

estimated species traits to those estimated from previously

published thermal reaction norms of the same species. These data

were collated from ten publications (Appendix S1). In cases where

different prior published studies measured growth rates on the

same strain, we pooled the measurements before estimating the

thermal reaction norm parameters. This has the drawback of
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ignoring interactive effects caused by differences in experimental

conditions between previous studies, but was necessary for two

reasons. Firstly, in several prior studies only growth rates below the

optimum were measured and these data could not be used without

pooling, and secondly we have a poor understanding of how the

differences in experimental conditions (irradiance, day length,

nutrient concentrations, etc.) interact with temperature to

determine growth rate, preventing us from incorporating covar-

iates in any meaningful way.

Testing for interspecific differences in thermal

traits. We also tested whether there were significant differences

among species in thermal trait distributions. In order to account

for uncertainty in our estimates of these traits, we used a

parametric bootstrapping approach coupled with information

criterion-based model selection [102]. This comparison was

performed on the five species for which we measured more than

a single strain (Thalassiosira pseudonana, Thalassiosira rotula, T.

erythraeum, A. sanguinea and C. watsonii). For each strain, we fitted

the function described earlier to the growth rate measurements

and extracted the residuals from this fit. We then performed 1000

residual bootstraps, a procedure in which the residuals are

randomly ‘reassigned’ to predicted values (each of which

corresponds to a growth rate measurement) and added to them,

thereby generating a slightly different thermal reaction norm

[103]. For each iteration, we refitted the function and estimated

the parameters (z, w, a, b) and also the two derived traits,

maximum growth rate and optimum temperature for growth.

Examining the distribution of these parameters and traits over the

1000 bootstraps allows us to quantify the uncertainty in our

estimates, which we can then incorporate in models seeking to

explain variation in them.

For each set of bootstraps of all 21 strains (i.e. a relatively small

dataset for interspecific comparisons), we fitted two linear models

to each trait (optimum temperature, temperature niche width and

maximum growth rate) and compared their explanatory ability

using AICc values (Akaike Information Criterion, corrected for

small sample size) models rather than AIC. One of these models

included just an intercept term while the other had both an

intercept and species identity as an explanatory variable. We then

examined the distribution of delta AICc (AICc [model with species

identity] minus AICc [model without]) values over the 1000

bootstraps to determine whether species identity was a useful

predictor of each of the three thermal traits. If the entire 95%

confidence interval of AICc values exceeded zero, we concluded

that species identity was a useful predictor and that species differed

in the distribution of the trait.

Comparison of traits with environmental data. We

obtained estimates for mean annual and monthly mean temper-

atures at locations close to the isolation location of each strain

using the World Ocean Atlas [91]. We approximated the annual

temperature ranges for each species using the difference between

the maximum monthly mean temperature and the minimum

monthly mean temperature at each location, i.e. thermal

variability sensu [46]. Thereafter, we attempted to explain variation

in three temperature traits (optimum temperature for growth,

temperature niche width, and maximum growth rate) with linear

models containing these environmental parameters for each

species. The best model was chosen using AIC values. Statistical

analyses were performed using a combination of least squares and

maximum likelihood estimation techniques using the R statistical

computing environment (version 2.15.0).

Supporting Information

Figure S1 The individual reactions norms (specific
growth rates per day) of all measured strains and
cultures obtained by fitting a thermal tolerance function
(see Methods) to these data.
(TIF)

Figure S2 Intraspecific variation in thermal reaction
norms for species in which only one strain was
available.
(TIF)

Figure S3 A summary of temperature optima, maxi-
mum growth rates and niche width – expressed as box
and whiskers plots - for each of the species used in our
study. The black bands denote the median value, the bottom and

top of the box represent the 1st and 3rd quartile of the data,

respectively. The ‘whiskers’ extending from the boxes indicate the

positions of the lowest & highest values in the data. If the sample

size is small enough, the whiskers may not appear (e.g. if there are

only 3 equally spaced points, the value represented as the 1st

quartile is the lowest value).

(TIF)

Figure S4 A summary of temperature optima (6C)
obtained here (red boxes) and from the literature (blue
boxes), expressed as box and whiskers plots, for each of
the species used in our study (red). The thick black line in

each box represents the median temperature.

(TIF)

Figure S5 A summary of niche width (6C), expressed as
box and whiskers plots - for each of the species used in
our study.
(TIF)

Figure S6 A summary of maximum growth rate ex-
pressed as box and whiskers plots - for each of the
species used in our study.
(TIF)

Figure S7 A plot of niche widths versus annual temper-
ature range. Data points are coloured by species. This plot omits

the niche widths that are poorly resolved (i.e. the 6 T. pseudonana +1

A. sanguinea strain). Niche widths increase as the annual

temperature range increases, in accordance with the climate

variability hypothesis.

(TIF)

Appendix S1
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